Internalizing representation independence with univalence

Author:

Angiuli Carlo1ORCID,Cavallo Evan1ORCID,Mörtberg Anders2,Zeuner Max2

Affiliation:

1. Carnegie Mellon University, USA

2. Stockholm University, Sweden

Abstract

In their usual form, representation independence metatheorems provide an external guarantee that two implementations of an abstract interface are interchangeable when they are related by an operation-preserving correspondence. If our programming language is dependently-typed, however, we would like to appeal to such invariance results within the language itself, in order to obtain correctness theorems for complex implementations by transferring them from simpler, related implementations. Recent work in proof assistants has shown that Voevodsky's univalence principle allows transferring theorems between isomorphic types, but many instances of representation independence in programming involve non-isomorphic representations. In this paper, we develop techniques for establishing internal relational representation independence results in dependent type theory, by using higher inductive types to simultaneously quotient two related implementation types by a heterogeneous correspondence between them. The correspondence becomes an isomorphism between the quotiented types, thereby allowing us to obtain an equality of implementations by univalence. We illustrate our techniques by considering applications to matrices, queues, and finite multisets. Our results are all formalized in Cubical Agda, a recent extension of Agda which supports univalence and higher inductive types in a computationally well-behaved way.

Funder

Vetenskapsrådet

Air Force Office of Scientific Research

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Reference55 articles.

1. Andreas Abel Jesper Cockx Dominique Devriese Amin Timany and Philip Wadler. 2020. Leibniz equality is isomorphic to Martin-Löf identity parametricaJloluyr.nal of Functional Programming 30 ( 2020 ) e17. https://doi.org/10.1017/ S0956796820000155 10.1017/S0956796820000155 Andreas Abel Jesper Cockx Dominique Devriese Amin Timany and Philip Wadler. 2020. Leibniz equality is isomorphic to Martin-Löf identity parametricaJloluyr.nal of Functional Programming 30 ( 2020 ) e17. https://doi.org/10.1017/ S0956796820000155 10.1017/S0956796820000155

2. Benedikt Ahrens and Peter LeFanu Lumsdaine. 2017. Displayed Categorie2sn.dInInternational Conference on Formal Structures for Computation and Deduction (FSCD 2017 ) (Leibniz International Proceedings in Informatics (LIPIcs) Vol. 84 ) (Eds.). Springer International Publishing Cham 160-17h6t.tps://doi.org/10.1007/978-3-319-08970-6_11 Benedikt Ahrens and Peter LeFanu Lumsdaine. 2017. Displayed Categorie2sn.dInInternational Conference on Formal Structures for Computation and Deduction (FSCD 2017 ) (Leibniz International Proceedings in Informatics (LIPIcs) Vol. 84 ) (Eds.). Springer International Publishing Cham 160-17h6t.tps://doi.org/10.1007/978-3-319-08970-6_11

3. Cyril Cohen Thierry Coquand Simon Huber and Anders Mörtberg. 2018. Cubical Type Theory: A Constructive Interpretation of the Univalence Axiom2. 1Inst International Conference on Types for Proofs and Programs (TYPES 2015 ) (Leibniz International Proceedings in Informatics (LIPIcs) Vol. 69 ) Tarmo Uustalu (Ed.). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik Dagstuhl Germany 5 : 1-5 :34h.ttps://doi.org/10.4230/LIPIcs.TYPES. 2015.5 Cyril Cohen Thierry Coquand Simon Huber and Anders Mörtberg. 2018. Cubical Type Theory: A Constructive Interpretation of the Univalence Axiom2. 1Inst International Conference on Types for Proofs and Programs (TYPES 2015 ) (Leibniz International Proceedings in Informatics (LIPIcs) Vol. 69 ) Tarmo Uustalu (Ed.). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik Dagstuhl Germany 5 : 1-5 :34h.ttps://doi.org/10.4230/LIPIcs.TYPES. 2015.5

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Internal and Observational Parametricity for Cubical Agda;Proceedings of the ACM on Programming Languages;2024-01-05

2. Artifact Report: Trocq: Proof Transfer for Free, With or Without Univalence;Lecture Notes in Computer Science;2024

3. Trocq: Proof Transfer for Free, With or Without Univalence;Lecture Notes in Computer Science;2024

4. What's in a Bag?: An “Application Proving Interface” for Finite Bags and its Implementation;The 35th Symposium on Implementation and Application of Functional Languages;2023-08-29

5. Computing Cohomology Rings in Cubical Agda;Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs;2023-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3