Field-weighted Factorization Machines for Click-Through Rate Prediction in Display Advertising
Author:
Affiliation:
1. Oath Inc., Sunnyvale, CA, USA
2. TouchPal Inc., Shanghai, China
3. University of California, Berkeley, Berkeley, CA, USA
4. LinkedIn Corporation, Mountain View, CA, USA
5. Ablibaba Group, Hangzhou, China
Publisher
ACM Press
Reference26 articles.
1. Michal Aharon, Natalie Aizenberg, Edward Bortnikov, Ronny Lempel, Roi Adadi, Tomer Benyamini, Liron Levin, Ran Roth, and Ohad Serfaty . 2013. OFF-set: one-pass factorization of feature sets for online recommendation in persistent cold start settings. In Proceedings of the 7th ACM Conference on Recommender Systems. ACM, 375--378.
2. Interactive Advertising Bureau . 2016. IAB internet advertising revenue report. (2016). deftempurl%https://www.iab.com/wp-content/uploads/2016/04/IAB_Internet_Advertising_Revenue_Report_FY_2016.pdf tempurl
3. Yin-Wen Chang, Cho-Jui Hsieh, Kai-Wei Chang, Michael Ringgaard, and Chih-Jen Lin . 2010. Training and testing low-degree polynomial data mappings via linear SVM. Journal of Machine Learning Research Vol. 11, Apr (2010), 1471--1490.
4. Olivier Chapelle, Eren Manavoglu, and Romer Rosales . 2015. Simple and scalable response prediction for display advertising. ACM Transactions on Intelligent Systems and Technology (TIST) Vol. 5, 4 (2015), 61.
5. Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et almbox. . 2016. Wide & deep learning for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. ACM, 7--10.
Cited by 139 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. ADSNet: Cross-Domain LTV Prediction with an Adaptive Siamese Network in Advertising;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24
2. Ads Recommendation in a Collapsed and Entangled World;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24
3. Understanding the Ranking Loss for Recommendation with Sparse User Feedback;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24
4. Rotative Factorization Machines;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24
5. DONN: leveraging heterogeneous outer products for CTR prediction;Neural Computing and Applications;2024-08-16
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3