Finding Subcube Heavy Hitters in Analytics Data Streams
Author:
Affiliation:
1. Adobe Research, San Jose, CA, USA
2. Rutgers University, New Brunswick, NJ, USA
3. University of Massachusetts, Amherst, Amherst, MA, USA
Publisher
ACM Press
Reference21 articles.
1. Ion Androutsopoulos, Georgios Paliouras, Vangelis Karkaletsis, Georgios Sakkis, Constantine D. Spyropoulos, and Panagiotis Stamatopoulos. 2000. Learning to Filter Spam E-Mail: A Comparison of a Naive Bayesian and a Memory-Based Approach. CoRR cs.CL/0009009 (2000).
2. Vladimir Braverman, Kai-Min Chung, Zhenming Liu, Michael Mitzenmacher, and Rafail Ostrovsky. 2010. AMS Without 4-Wise Independence on Product Domains. In STACS (LIPIcs), Vol. 5. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 119--130.
3. Vladimir Braverman and Rafail Ostrovsky. 2010. Measuring independence of datasets. In STOC. ACM, 271--280.
4. Graham Cormode. 2008. Finding Frequent Items in Data Streams. http: //dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf. (2008). DIMACS Workshop.
5. Graham Cormode and S. Muthukrishnan. 2004. An Improved Data Stream Summary: The Count-Min Sketch and Its Applications. In LATIN (Lecture Notes in Computer Science), Vol. 2976. Springer, 29--38.
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Towards Better Bounds for Finding Quasi-Identifiers;Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems;2023-06-18
2. Box queries over multi-dimensional streams;Information Systems;2022-11
3. Box queries over multi-dimensional streams;Proceedings of the 15th ACM International Conference on Distributed and Event-based Systems;2021-06-28
4. Subspace Exploration;Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems;2021-06-20
5. Fast Identification of Heavy Hitters by Cached and Packed Group Testing;String Processing and Information Retrieval;2019
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3