Cache-, hash-, and space-efficient bloom filters

Author:

Putze Felix1,Sanders Peter1,Singler Johannes1

Affiliation:

1. Universität Karlsruhe

Abstract

A Bloom filter is a very compact data structure that supports approximate membership queries on a set, allowing false positives. We propose several new variants of Bloom filters and replacements with similar functionality. All of them have a better cache-efficiency and need less hash bits than regular Bloom filters. Some use SIMD functionality, while the others provide an even better space efficiency. As a consequence, we get a more flexible trade-off between false-positive rate, space-efficiency, cache-efficiency, hash-efficiency, and computational effort. We analyze the efficiency of Bloom filters and the proposed replacements in detail, in terms of the false-positive rate, the number of expected cache-misses, and the number of required hash bits. We also describe and experimentally evaluate the performance of highly tuned implementations. For many settings, our alternatives perform better than the methods proposed so far.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vertex Encoding for Edge Nonexistence Determination With SIMD Acceleration;IEEE Transactions on Knowledge and Data Engineering;2024-07

2. Optimizing Collections of Bloom Filters within a Space Budget;Proceedings of the VLDB Endowment;2024-07

3. Simple, Efficient, and Robust Hash Tables for Join Processing;Proceedings of the 20th International Workshop on Data Management on New Hardware;2024-06-09

4. Caching in Forschung und Industrie;Schnelles und skalierbares Cloud-Datenmanagement;2024

5. InfiniFilter: Expanding Filters to Infinity and Beyond;Proceedings of the ACM on Management of Data;2023-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3