CRP2.0: A Fast and Robust Cooperation between Routing and Placement in Advanced Technology Nodes

Author:

Aghaeekiasaraee Erfan1ORCID,Tabrizi Aysa Fakheri1ORCID,Fontana Tiago Augusto2ORCID,Netto Renan2ORCID,Almeida Sheiny Fabre2ORCID,Gandhi Upma1ORCID,Güntzel José Luís2ORCID,Westwick David1ORCID,Behjat Laleh1ORCID

Affiliation:

1. University of Calgary, Canada

2. Federal University of Santa Catarina, Brazil

Abstract

Traditionally, the placement and routing stages of a physical design are performed separately. Because of the additional complexities arising in advanced technology nodes, they have become more interdependent. Therefore, creating efficient cooperation between the routing and placement steps has become an important topic in Electronic Design Automation (EDA). In this article, a framework that allows cooperation between routing and placement is proposed. The main objective of the proposed framework is to improve the detailed routing solution by combining routing and placement. The core of this framework is the Cooperation between Routing and Placement (CRP2.0)1engine including techniques to combine routing and placement. The key contributions of CRP2.0 include an Integer Linear Programming (ILP)-based Detailed Placement (ILP-DP), net classification, and two Cost and Net Caching techniques. The efficacy of the proposed framework is evaluated on the official ACM/IEEE International Symposium on Physical Design (ISPD) 2018 and 2019 contest benchmarks. In this article, we show that by using the Cost Caching technique, the global routing runtime compared with state-of-the-art algorithms was reduced by 28.56%, on average. Moreover, numerical results show that when working with advanced technology nodes, the proposed framework can improve the detailed routing score by an average of 0.3% while only moving 0.7% of the cells, on average. The proposed engine can be employed as an add-on to the physical design flow between the global routing and detailed routing steps.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mixed Integer Programming based Placement Refinement by RSMT Model with Movable Pins;ACM Transactions on Design Automation of Electronic Systems;2024-01-03

2. ILPGRC: ILP-Based Global Routing Optimization With Cell Movements;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3