LoWino: Towards Efficient Low-Precision Winograd Convolutions on Modern CPUs

Author:

Li Guangli1,Jia Zhen2,Feng Xiaobing1,Wang Yida2

Affiliation:

1. Institute of Computing Technology, Chinese Academy of Sciences and University of Chinese Academy of Sciences, China

2. Amazon, United States of America

Funder

Science Fund for Creative Research Groups of the National Natural Science Foundation of China

National Key R&D Program of China

Publisher

ACM

Reference47 articles.

1. Error Analysis and Improving the Accuracy of Winograd Convolution for Deep Neural Networks

2. DianNao family

3. Recent advances in efficient computation of deep convolutional neural networks

4. Low-bit Quantization of Neural Networks for Efficient Inference

5. Matthieu Courbariaux Itay Hubara Daniel Soudry Ran El-Yaniv and Yoshua Bengio. 2016. Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830(2016). Matthieu Courbariaux Itay Hubara Daniel Soudry Ran El-Yaniv and Yoshua Bengio. 2016. Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830(2016).

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. YFlows: Systematic Dataflow Exploration and Code Generation for Efficient Neural Network Inference using SIMD Architectures on CPUs;Proceedings of the 33rd ACM SIGPLAN International Conference on Compiler Construction;2024-02-17

2. Fast Convolution Meets Low Precision: Exploring Efficient Quantized Winograd Convolution on Modern CPUs;ACM Transactions on Architecture and Code Optimization;2024-01-19

3. Wino Vidi Vici: Conquering Numerical Instability of 8-bit Winograd Convolution for Accurate Inference Acceleration on Edge;2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2024-01-03

4. Efficient Super-Resolution System With Block-Wise Hybridization and Quantized Winograd on FPGA;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2023-11

5. An Efficient Accelerator on FPGA for Large Convolution and Correlation using Winograd;2023 8th International Conference on Integrated Circuits and Microsystems (ICICM);2023-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3