A Deep Time Delay Filter for Cooperative Adaptive Cruise Control

Author:

Hsueh Kuei-Fang1,Farnood Ayleen1,Al-Darabsah Isam2,Al Saaideh Mohammad3,Al Janaideh Mohammad4,Kundur Deepa1

Affiliation:

1. University of Toronto, Canada

2. Jordan University of Science and Technology, Jordan

3. Memorial University, Canada

4. University of Guelph, Canada

Abstract

Cooperative adaptive cruise control (CACC) is a smart transportation solution to alleviate traffic congestion and enhance road safety. The performance of CACC systems can be remarkably affected by communication time delays, and traditional control methods often compromise control performance by adjusting control gains to maintain system stability. In this paper, we present a study on the stability of a CACC system in the presence of time delays and highlight the trade-off between control performance and tuning controller gains to address increasing delays. We propose a novel approach incorporating a neural network module called the deep time delay filter (DTDF) to overcome this limitation. The DTDF leverages the assumption that time delays primarily originate from the communication layer of the CACC network, which can be subject to adversarial delays of varying magnitudes. By considering time-delayed versions of the car states and predicting the present (un-delayed) states, the DTDF compensates for the effects of communication delays. The proposed approach combines classical control techniques with machine learning, offering a hybrid control system that excels in explainability and robustness to unknown parameters. We conduct comprehensive experiments using various deep-learning architectures to train and evaluate the DTDF models. Our experiments utilize a robot platform consisting of MATLAB, Simulink, the Optitrack motion capture system, and the Qbot2e robots. Through these experiments, we demonstrate that when appropriately trained, our system can effectively mitigate the adverse effects of constant time delays and outperforms a traditional CACC baseline in control performance. This experimental comparison, to the best of the author’s knowledge, is the first of its kind in the context of a hybrid machine learning CACC system. We thoroughly explore initial conditions and range policy parameters to evaluate our system under various experimental scenarios. By providing detailed insights and experimental results, we aim to contribute to the advancement of CACC research and highlight the potential of hybrid machine learning approaches in improving the performance and reliability of CACC systems.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3