Graph-Based Label Propagation in Digital Media

Author:

Zoidi Olga1,Fotiadou Eftychia1,Nikolaidis Nikos1,Pitas Ioannis1

Affiliation:

1. Aristotle University of Thessaloniki, Thessaloniki, Greece

Abstract

The expansion of the Internet over the last decade and the proliferation of online social communities, such as Facebook, Google+, and Twitter, as well as multimedia sharing sites, such as YouTube, Flickr, and Picasa, has led to a vast increase of available information to the user. In the case of multimedia data, such as images and videos, fast querying and processing of the available information requires the annotation of the multimedia data with semantic descriptors, that is, labels. However, only a small proportion of the available data are labeled. The rest should undergo an annotation-labeling process. The necessity for the creation of automatic annotation algorithms gave birth to label propagation and semi-supervised learning. In this study, basic concepts in graph-based label propagation methods are discussed. Methods for proper graph construction based on the structure of the available data and label inference methods for spreading label information from a few labeled data to a larger set of unlabeled data are reviewed. Applications of label propagation algorithms in digital media, as well as evaluation metrics for measuring their performance, are presented.

Funder

European Union Seventh Framework Programme

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference164 articles.

1. M. Alonso and E. J. Finn. 1967. Fundamental University Physics. Addison-Wesley. M. Alonso and E. J. Finn. 1967. Fundamental University Physics. Addison-Wesley.

2. A. Amir M. Berg S. F. Chang W. Hsu G. Iyengar C. Y. Lin M. Naphade A. Natsev C. Neti H. Nock etal 2003. IBM research TRECVID-2003 video retrieval system. In NIST TRECVID-2003. A. Amir M. Berg S. F. Chang W. Hsu G. Iyengar C. Y. Lin M. Naphade A. Natsev C. Neti H. Nock et al. 2003. IBM research TRECVID-2003 video retrieval system. In NIST TRECVID-2003.

3. A. Argyriou M. Herbster and M. Pontil. 2005. Combining graph laplacians for semi-supervised learning. In Advances in Neural Information Processing Systems 18. MIT Press 67--74. A. Argyriou M. Herbster and M. Pontil. 2005. Combining graph laplacians for semi-supervised learning. In Advances in Neural Information Processing Systems 18. MIT Press 67--74.

4. Video suggestion and discovery for youtube

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3