A Pure Visual Approach for Automatically Extracting and Aligning Structured Web Data

Author:

Estuka Fadwa1,Miller James1ORCID

Affiliation:

1. Electrical and Computer Engineering Department, University of Alberta, Edmonton, Canada

Abstract

Database-driven websites and the amount of data stored in their databases are growing enormously. Web databases retrieve relevant information in response to users’ queries; the retrieved information is encoded in dynamically generated web pages as structured data records. Identifying and extracting retrieved data records is a fundamental task for many applications, such as competitive intelligence and comparison shopping. This task is challenging due to the complex underlying structure of such web pages and the existence of irrelevant information. Numerous approaches have been introduced to address this problem, but most of them are HTML-dependent solutions that may no longer be functional with the continuous development of HTML. Although a few vision-based techniques have been introduced, various issues exist that inhibit their performance. To overcome this, we propose a novel visual approach, i.e., programming-language-independent, for automatically extracting structured web data. The proposed approach makes full use of the natural human tendency of visual object perception and the Gestalt laws of grouping. The extraction system consists of two tasks: (1) data record extraction, where we apply three of the Gestalt laws (i.e., laws of continuity, proximity, and similarity), which are used to group the adjacently aligned visually similar data records on a web page; and (2) data item extraction and alignment, where we employ the Gestalt law of similarity, which is utilized to group the visually identical data items. Our experiments upon large-scale test sets show that the proposed system is highly effective and outperforms the two state-of-art vision-based approaches, ViDE and rExtractor. The experiments produce an average F1 score of 86.02%, which is approximately 55% and 36% better than that of ViDE and rExtractor for data record extraction, respectively; and an average F1 score of 86.19%, which is approximately 39% better than that of ViDE for data item extraction.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3