Callback

Author:

Ros Alberto1,Kaxiras Stefanos2

Affiliation:

1. Universidad de Murcia, Spain

2. Uppsala University, Sweden

Abstract

Cache coherence protocols based on self-invalidation allow a simpler design compared to traditional invalidation-based protocols, by relying on data-race-free (DRF) semantics and applying self-invalidation on racy synchronization points exposed to the hardware. Their simplicity lies in the absence of invalidation traffic, which eliminates the need to track readers in a directory, and reduces the number of transient protocol states. With the addition of self-downgrade these protocols can become effectively directory-free. While this works well for race-free data, unfortunately, lack of explicit invalidations compromises the effectiveness of any synchronization that relies on races. This includes any form of spin waiting, which is employed for signaling, locking, and barrier primitives. In this work we propose a new solution for spin-waiting in these protocols, the callback mechanism, that is simpler and more efficient than explicit invalidation. Callbacks are set by reads involved in spin waiting, and are satisfied by writes (that can even precede these reads). To implement callbacks we use a small (just a few entries) directory-cache structure that is intended to service only these "spin-waiting" races. This directory structure is self-contained and is not backed up in any way. Entries are created on demand and can be evicted without the need to preserve their information. Our evaluation shows a significant improvement both over explicit invalidation and over exponential back-off, the state-of-the-art mechanism for self-invalidation protocols to avoid spinning in the shared cache.

Funder

Fundación Séneca

Ministerio de Economía y Competitividad

Publisher

Association for Computing Machinery (ACM)

Reference27 articles.

1. "Sclalable Synchronization Algorithms " http://www.cs.rochester.edu/research/synchronization/pseudocode/ss.html. "Sclalable Synchronization Algorithms " http://www.cs.rochester.edu/research/synchronization/pseudocode/ss.html.

2. Weak ordering---a new definition

3. Software-Based Cache Coherence with Hardware-Assisted Selective Self-Invalidations Using Bloom Filters

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fencing Programs with Self-Invalidation and Self-Downgrade;Formal Techniques for Distributed Objects, Components, and Systems;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3