SHRINK: Reducing the ISA complexity via instruction recycling

Author:

Lopes Bruno Cardoso1,Auler Rafael1,Ramos Luiz1,Borin Edson1,Azevedo Rodolfo1

Affiliation:

1. University of Campinas - UNICAMP - Brazil

Abstract

Microprocessor manufacturers typically keep old instruction sets in modern processors to ensure backward compatibility with legacy software. The introduction of newer extensions to the ISA increases the design complexity of microprocessor front-ends, exacerbates the consumption of precious on-chip resources (e.g., silicon area and energy), and demands more efforts for hardware verification and debugging. We analyzed several x86 applications and operating systems deployed between 1995 and 2012 and observed that many instructions stop being used over time, and more than 500 instructions were never used in these applications. We also investigate the impact of including these unused instructions in the design of the x86 decoders and propose SHRINK, a mechanism to remove old instructions without breaking backward compatibility with legacy code. SHRINK allows us to remove 40% of the instructions from the x86 ISA and improve the critical path, area, and power consumption of the instruction decoder, respectively, by 23%, 48%, and 49%, on average.

Publisher

Association for Computing Machinery (ACM)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MIMDRAM: An End-to-End Processing-Using-DRAM System for High-Throughput, Energy-Efficient and Programmer-Transparent Multiple-Instruction Multiple-Data Computing;2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2024-03-02

2. Improving multitask performance and energy consumption with partial-ISA multicores;Journal of Parallel and Distributed Computing;2021-07

3. Handling IoT platform heterogeneity with COISA, a compact OpenISA virtual platform;Concurrency and Computation: Practice and Experience;2016-08-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3