Quantitative comparison of hardware transactional memory for Blue Gene/Q, zEnterprise EC12, Intel Core, and POWER8

Author:

Nakaike Takuya1,Odaira Rei2,Gaudet Matthew3,Michael Maged M.4,Tomari Hisanobu5

Affiliation:

1. IBM Research - Tokyo

2. IBM Research - Austin

3. IBM Canada

4. IBM Watson Research Center

5. University of Tokyo

Abstract

Transactional Memory (TM) is a new programming paradigm for both simple concurrent programming and high concurrent performance. Hardware Transactional Memory (HTM) is hardware support for TM-based programming. It has lower overhead than software transactional memory (STM), which is a software-based implementation of TM. There are now four commercial systems, IBM Blue Gene/Q, IBM zEnterprise EC12, Intel Core, and IBM POWER8, offering HTM. Our work is the first to compare the performance of these four HTM systems. We measured the STAMP benchmarks, the most widely used TM benchmarks. We also evaluated the specific features of each HTM system. Our experimental results show that: (1) there is no single HTM system that is more scalable than the others in all of the benchmarks, (2) there are measurable performance differences among the HTM systems in some benchmarks, and (3) each HTM system has its own implementation characteristics that limit its scalability.

Publisher

Association for Computing Machinery (ACM)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accelerating block lifecycle on blockchain via hardware transactional memory;Journal of Parallel and Distributed Computing;2024-02

2. New Content Addressable Memory Architecture for Multi-Core Applications;Computer Memory and Data Storage;2024-01-10

3. Ordered Scheduling in Control-Flow Distributed Transactional Memory;Lecture Notes in Computer Science;2023

4. LosaTM: A Hardware Transactional Memory Integrated With a Low-Overhead Scenario-Awareness Conflict Manager;IEEE Transactions on Parallel and Distributed Systems;2022-12-01

5. Dynamic scheduling in distributed transactional memory;Distributed Computing;2021-11-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3