VIP

Author:

Nachiappan Nachiappan Chidambaram1,Zhang Haibo1,Ryoo Jihyun1,Soundararajan Niranjan2,Sivasubramaniam Anand1,Kandemir Mahmut T.1,Iyer Ravi2,Das Chita R.1

Affiliation:

1. The Pennsylvania State University

2. Intel Corporation

Abstract

Energy-efficient user-interactive and display-oriented applications on handhelds rely heavily on multiple accelerators (termed IP cores) to meet their periodic frame processing needs. Further, these platforms are starting to host multiple applications concurrently on the multiple CPU cores. Unfortunately, today's hardware exposes an interface that forces the host software (Android drivers) to treat each IP core as an isolated device. Consequently, the host CPU has to get involved in the (i) processing of each frame, (ii) scheduling them to ensure timely progress through the IP cores to meet their QoS needs, and (iii) explicitly having to move data from one IP core to the next, with main memory serving as the common staging area. We show in this paper through measurements on a Nexus 7 platform that the frequent invocation of the CPU for processing these frames and the involvement of main memory as a data flow conduit, are serious limitations. Instead, we propose a novel IP virtualization framework (VIP), involving three key ideas that allow several IPs to be chained together and made to appear to the software as a single device. First, chaining of IPs avoids data transfer through the memory system, enhancing the throughput of flows through the IPs. Second, by using a burst-mode, the CPU can initiate the processing of several frames through the virtual IP chain, without getting involved (and interrupted) for each frame, thereby allowing better energy saving and utilization opportunities. Removing the CPU from this loop, requires alternate orchestration of frame flows to ensure QoS guarantees for each frame of each application. Our third enhancement in VIP creates several virtual paths, one for each flow, through these IP chains with the hardware scheduling the frames to enforce QoS guarantees despite any contention for resources along the way. Our experimental evaluations demonstrate the effectiveness of VIP on energy consumption and QoS for multiple applications.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BurstLink: Techniques for Energy-Efficient Video Display for Conventional and Virtual Reality Systems;MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture;2021-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3