PrORAM

Author:

Yu Xiangyao1,Haider Syed Kamran2,Ren Ling1,Fletcher Christopher1,Kwon Albert1,van Dijk Marten2,Devadas Srinivas1

Affiliation:

1. Massachusetts Institute of Technology

2. University of Connecticut

Abstract

Oblivious RAM (ORAM) is an established technique to hide the access pattern to an untrusted storage system. With ORAM, a curious adversary cannot tell what address the user is accessing when observing the bits moving between the user and the storage system. All existing ORAM schemes achieve obliviousness by adding redundancy to the storage system, i.e., each access is turned into multiple random accesses. Such redundancy incurs a large performance overhead. Although traditional data prefetching techniques successfully hide memory latency in DRAM based systems, it turns out that they do not work well for ORAM because ORAM does not have enough memory bandwidth available for issuing prefetch requests. In this paper, we exploit ORAM locality by taking advantage of the ORAM internal structures. While it might seem apparent that obliviousness and locality are two contradictory concepts, we challenge this intuition by exploiting data locality in ORAM without sacrificing security. In particular, we propose a dynamic ORAM prefetching technique called PrORAM (Dynamic Prefetcher for ORAM) and comprehensively explore its design space. PrORAM detects data locality in programs at runtime, and exploits the locality without leaking any information on the access pattern. Our simulation results show that with PrORAM, the performance of ORAM can be significantly improved. PrORAM achieves an average performance gain of 20% over the baseline ORAM for memory intensive benchmarks among Splash2 and 5.5% for SPEC06 workloads. The performance gain for YCSB and TPCC in DBMS benchmarks is 23.6% and 5% respectively. On average, PrORAM offers twice the performance gain than that offered by a static super block scheme.

Publisher

Association for Computing Machinery (ACM)

Reference39 articles.

1. Remote oblivious storage: Making oblivious RAM practical;Boneh D.;Manuscript, http://dspace.mit.edu/bitstream/handle/1721.,2011

2. Effective hardware-based data prefetching for high-performance processors

3. Effective hardware-based data prefetching for high-performance processors

4. Benchmarking cloud serving systems with YCSB

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing TLB for Access Pattern Privacy Protection in Data Outsourcing;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2018

2. A Virtual Cache for Overlapped Memory Accesses of Path ORAM;International Journal of Networking and Computing;2017

3. Oblivious Network RAM and Leveraging Parallelism to Achieve Obliviousness;Advances in Cryptology -- ASIACRYPT 2015;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3