On the union of fat tetrahedra in three dimensions

Author:

Ezra Esther1,Sharir Micha2

Affiliation:

1. Tel Aviv University, Tel Aviv, Israel

2. Tel Aviv University, Tel Aviv, Israel and New York University, New York, NY

Abstract

We show that the combinatorial complexity of the union of n “fat” tetrahedra in 3-space (i.e., tetrahedra all of whose solid angles are at least some fixed constant) of arbitrary sizes, is O ( n 2+ε ), for any ε > 0;the bound is almost tight in the worst case, thus almost settling a conjecture of Pach et al. [2003]. Our result extends, in a significant way, the result of Pach et al. [2003] for the restricted case of nearly congruent cubes . The analysis uses cuttings, combined with the Dobkin-Kirkpatrick hierarchical decomposition of convex polytopes, in order to partition space into subcells, so that, on average, the overwhelming majority of the tetrahedra intersecting a subcell Δ behave as fat dihedral wedges in Δ. As an immediate corollary, we obtain that the combinatorial complexity of the union of n cubes in R 3 , having arbitrary side lengths, is O ( n 2+ε ), for any ε > 0 (again, significantly extending the result of Pach et al. [2003]). Finally, our analysis can easily be extended to yield a nearly quadratic bound on the complexity of the union of arbitrarily oriented fat triangular prisms (whose cross-sections have arbitrary sizes) in R 3 .

Funder

Hermann Minkowski -- MINERVA

Israel Science Foundation

Division of Computing and Communication Foundations

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Union of Hypercubes and 3D Minkowski Sums with Random Sizes;Discrete & Computational Geometry;2021-04-08

2. Improved Bounds for the Union of Locally Fat Objects in the Plane;SIAM Journal on Computing;2014-01

3. Unions of Fat Convex Polytopes Have Short Skeletons;Discrete & Computational Geometry;2012-03-08

4. On the Union of Cylinders in Three Dimensions;Discrete & Computational Geometry;2010-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3