Performance Evaluation of Network Topologies using Graph-Based Deep Learning

Author:

Geyer Fabien1

Affiliation:

1. Technical University of Munich

Funder

German Federal Ministry of Education and Research (BMBF)

Publisher

ACM

Reference28 articles.

1. 2017. ns-2 Network Simulator (ver. 2.35). (2017). Retrieved July 28 2017 from https://www.isi.edu/nsnam/ns/ 2017. ns-2 Network Simulator (ver. 2.35). (2017). Retrieved July 28 2017 from https://www.isi.edu/nsnam/ns/

2. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dan Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. (2015). http://tensorflow.org/ Software available from tensorflow.org. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dan Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. (2015). http://tensorflow.org/ Software available from tensorflow.org.

3. Luis B. Almeida. 1990. Artificial Neural Networks. IEEE Press Piscataway NJ USA Chapter A Learning Rule for Asynchronous Perceptrons with Feedback in a Combinatorial Environment 102--111. Luis B. Almeida. 1990. Artificial Neural Networks. IEEE Press Piscataway NJ USA Chapter A Learning Rule for Asynchronous Perceptrons with Feedback in a Combinatorial Environment 102--111.

4. Modeling TCP latency

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combining graph neural network with deep reinforcement learning for resource allocation in computing force networks;Frontiers of Information Technology & Electronic Engineering;2024-05

2. Towards Digital Network Twins: Can we Machine Learn Network Function Behaviors?;2023 IEEE 9th International Conference on Network Softwarization (NetSoft);2023-06-19

3. Modeling TCP performance using graph neural networks;Proceedings of the 1st International Workshop on Graph Neural Networking;2022-12-06

4. Deep Learning to Predict the Feasibility of Priority-Based Ethernet Network Configurations;ACM Transactions on Cyber-Physical Systems;2021-10-31

5. Improvements to Deep-Learning-based Feasibility Prediction of Switched Ethernet Network Configurations;29th International Conference on Real-Time Networks and Systems;2021-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3