Abstract
There are a number of sources of randomness that arise in military airlift operations. However, the cost of uncertainty can be difficult to estimate, and is easy to overestimate if we use simplistic decision rules. Using data from Canadian military airlift operations, we study the effect of uncertainty in customer demands as well as aircraft failures, on the overall cost. The system is first analyzed using the types of myopic decision rules widely used in the research literature. The performance of the myopic policy is then compared to the results obtained using robust decisions that account for the uncertainty of future events. These are obtained by modeling the problem as a dynamic program, and solving Bellman’s equations using approximate dynamic programming. The experiments show that even approximate solutions to Bellman’s equations produce decisions that reduce the cost of uncertainty.
Funder
Air Force Office of Scientific Research
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Science Applications,Modeling and Simulation
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献