Affiliation:
1. Wayne State University, Detroit, MI
Abstract
Recent research in compositional real-time systems has focused on determination of a component's real-time interface parameters. An important objective in interface-parameter determination is minimizing the bandwidth allocated to each component of the system while simultaneously guaranteeing component schedulability. With this goal in mind, in this article, we explore fixed-priority schedulability in compositional setting. First we derive an efficient exact test based on iterative convergence for sporadic task systems scheduled by fixed-priority (e.g., deadline monotonic, rate monotonic) upon an explicit-deadline periodic (EDP) resource. Then we address the time complexity of the exact test by developing a fully-polynomial-time approximation scheme (FPTAS) for allocating bandwidth to components. Our parametric algorithm takes the task system and an accuracy parameter ε > 0 as input and returns a bandwidth which is guaranteed to be at most a factor (1 + ε) times the optimal minimum bandwidth required to successfully schedule the task system. We perform thorough simulation over synthetically generated task systems to compare the performance of our proposed efficient-exact and the approximate algorithm and observe a significant decrease in runtime and a very small relative error when comparing the approximate algorithm with the exact algorithm and the sufficient algorithm.
Funder
Division of Computer and Network Systems
Wayne State University
Publisher
Association for Computing Machinery (ACM)
Subject
Hardware and Architecture,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献