A novel low-power embedded object recognition system working at multi-frames per second

Author:

Nikitakis Antonis1,Papaioannou Savvas1,Papaefstathiou Ioannis1

Affiliation:

1. Technical University of Crete

Abstract

One very important challenge in the field of multimedia is the implementation of fast and detailed Object Detection and Recognition systems. In particular, in the current state-of-the-art mobile multimedia systems, it is highly desirable to detect and locate certain objects within a video frame in real time. Although a significant number of Object Detection and Recognition schemes have been developed and implemented, triggering very accurate results, the vast majority of them cannot be applied in state-of-the-art mobile multimedia devices; this is mainly due to the fact that they are highly complex schemes that require a significant amount of processing power, while they are also time consuming and very power hungry. In this article, we present a novel FPGA-based embedded implementation of a very efficient object recognition algorithm called Receptive Field Cooccurrence Histograms Algorithm (RFCH). Our main focus was to increase its performance so as to be able to handle the object recognition task of today's highly sophisticated embedded multimedia systems while keeping its energy consumption at very low levels. Our low-power embedded reconfigurable system is at least 15 times faster than the software implementation on a low-voltage high-end CPU, while consuming at least 60 times less energy. Our novel system is also 88 times more energy efficient than the recently introduced low-power multi-core Intel devices which are optimized for embedded systems. This is, to the best of our knowledge, the first system presented that can execute the complete complex object recognition task at a multi frame per second rate while consuming minimal amounts of energy, making it an ideal candidate for future embedded multimedia systems.

Funder

Seventh Framework Programme

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3