Affiliation:
1. College of Systems Engineering, National University of Defense Technology, Changsha, Hunan Province, China
Abstract
With the development of smart devices, the computing capabilities of portable end devices such as mobile phones have been greatly enhanced. Meanwhile, traditional cloud computing faces great challenges caused by privacy-leakage and time-delay problems, there is a trend to push models down to edges and end devices. However, due to the limitation of computing resource, it is difficult for end devices to complete complex computing tasks alone. Therefore, this article divides the model into two parts and deploys them on multiple end devices and edges, respectively. Meanwhile, an early exit is set to reduce computing resource overhead, forming a hierarchical distributed architecture. In order to enable the distributed model to continuously evolve by using new data generated by end devices, we comprehensively consider various data distributions on end devices and edges, proposing a hierarchical federated learning framework
FLEE
, which can realize dynamical updates of models without redeploying them. Through image and sentence classification experiments, we verify that it can improve model performances under all kinds of data distributions, and prove that compared with other frameworks, the models trained by
FLEE
consume less global computing resource in the inference stage.
Funder
National Natural Science Foundation of China
Scientific Research Project of National University of Defense Technology
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Theoretical Computer Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献