Importance sampling for sums of random variables with regularly varying tails

Author:

Dupuis Paul1,Leder Kevin1,Wang Hui1

Affiliation:

1. Brown University, Providence, RI

Abstract

Importance sampling is a variance reduction technique for efficient estimation of rare-event probabilities by Monte Carlo. For random variables with heavy tails there is little consensus on how to choose the change of measure used in importance sampling. In this article we study dynamic importance sampling schemes for sums of independent and identically distributed random variables with regularly varying tails. The number of summands can be random but must be independent of the summands. For estimating the probability that the sum exceeds a given threshold, we explicitly identify a class of dynamic importance sampling algorithms with bounded relative errors. In fact, these schemes are nearly asymptotically optimal in the sense that the second moment of the corresponding importance sampling estimator can be made as close as desired to the minimal possible value.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,Modelling and Simulation

Reference12 articles.

1. Asmussen S. 2000. Ruin Probabilities. World Scientific Singapore. Asmussen S. 2000. Ruin Probabilities. World Scientific Singapore.

2. Asmussen S. and Kroese D. 2004. Improved algorithms for rare event simulation with heavy tails. Tech. rep. The Danish National Research Foundation: Network in Mathematical Physics and Stochastics. Asmussen S. and Kroese D. 2004. Improved algorithms for rare event simulation with heavy tails. Tech. rep. The Danish National Research Foundation: Network in Mathematical Physics and Stochastics.

3. Billingsley P. 1968. Convergence of Probability Measures. John Wiley New York. Billingsley P. 1968. Convergence of Probability Measures. John Wiley New York.

4. Bingham N. Goldie C. and Teugels J. 1987. Regular Variation. Cambridge University Press Cambridge. Bingham N. Goldie C. and Teugels J. 1987. Regular Variation. Cambridge University Press Cambridge.

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3