Empirical Review of Various Thermography-based Computer-aided Diagnostic Systems for Multiple Diseases

Author:

Gupta Trasha1ORCID,Jindal Rajni1ORCID,Sreedevi Indu1ORCID

Affiliation:

1. Delhi Technological University, India

Abstract

The lifestyle led by today’s generation and its negligence towards health is highly susceptible to various diseases. Developing countries are at a higher risk of mortality due to late-stage presentation, inaccessible diagnosis, and high-cost treatment. Thermography-based technology, aided with machine learning, for screening inflammation in the human body is non-invasive and cost-wise appropriate. It requires very little equipment, especially in rural areas with limited facilities. Recently, Thermography-based monitoring has been deployed worldwide at various organizations and public gathering points as a first measure of screening COVID-19 patients. In this article, we systematically compare the state-of-the-art feature extraction approaches for analyzing thermal patterns in the human body, individually and in combination, on a platform using three publicly available Datasets of medical thermal imaging, four Feature Selection methods, and four well-known Classifiers, and analyze the results. We developed and used a two-level sampling method for training and testing the classification model. Among all the combinations considered, the classification model with Unified Feature-Sets gave the best performance for all the datasets. Also, the experimental results show that the classification accuracy improves considerably with the use of feature selection methods. We obtained the best performance with a features subset of 45, 57, and 39 features (from Unified Feature Set) with a combination of mRMR and SVM for DB-DMR-IR and DB-FOOT-IR and a combination of ReF and RF for DB-THY-IR. Also, we found that for all the feature subsets, the features obtained are relevant, non-redundant, and distinguish normal and abnormal thermal patterns with the accuracy of 94.75% on the DB-DMR-IR dataset, 93.14% on the DB-FOOT-IR dataset, and 92.06% on the DB-THY-IR dataset.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3