Affiliation:
1. University College London
2. Brunel University
Abstract
The increasing number of people playing games on touch-screen mobile phones raises the question of whether touch behaviors reflect players’ emotional states. This prospect would not only be a valuable evaluation indicator for game designers, but also for real-time personalization of the game experience. Psychology studies on acted touch behavior show the existence of discriminative affective profiles. In this article, finger-stroke features during gameplay on an iPod were extracted and their discriminative power analyzed. Machine learning algorithms were used to build systems for automatically discriminating between four emotional states (Excited, Relaxed, Frustrated, Bored), two levels of arousal and two levels of valence. Accuracy reached between 69% and 77% for the four emotional states, and higher results (~89%) were obtained for discriminating between two levels of arousal and two levels of valence. We conclude by discussing the factors relevant to the generalization of the results to applications other than games.
Publisher
Association for Computing Machinery (ACM)
Subject
Human-Computer Interaction
Cited by
117 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献