An empirical study of testing machine learning in the wild

Author:

Openja Moses1ORCID,Khomh Foutse1ORCID,Foundjem Armstrong1ORCID,Jiang Zhen Ming (Jack)2ORCID,Abidi Mouna1ORCID,Hassan Ahmed E.3ORCID

Affiliation:

1. Polytechnique Montréal, Canada

2. York University, Canada

3. Queen’s University, Canada

Abstract

Background: Recently, machine and deep learning (ML/DL) algorithms have been increasingly adopted in many software systems. Due to their inductive nature, ensuring the quality of these systems remains a significant challenge for the research community. Traditionally, software systems were constructed deductively, by writing explicit rules that govern the behavior of the system as program code. However, ML/DL systems infer rules from training data i.e., they are generated inductively). Recent research in ML/DL quality assurance has adapted concepts from traditional software testing, such as mutation testing, to improve reliability. However, it is unclear if these proposed testing techniques are adopted in practice, or if new testing strategies have emerged from real-world ML deployments. There is little empirical evidence about the testing strategies. Aims: To fill this gap, we perform the first fine-grained empirical study on ML testing in the wild to identify the ML properties being tested, the testing strategies, and their implementation throughout the ML workflow. Method: We conducted a mixed-methods study to understand ML software testing practices. We analyzed test files and cases from 11 open-source ML/DL projects on GitHub. Using open coding, we manually examined the testing strategies, tested ML properties, and implemented testing methods to understand their practical application in building and releasing ML/DL software systems. Results: Our findings reveal several key insights: 1.) The most common testing strategies, accounting for less than 40%, are Grey-box and White-box methods, such as Negative Testing , Oracle Approximation , and Statistical Testing . 2.) A wide range of \(17\) ML properties are tested, out of which only 20% to 30% are frequently tested, including Consistency , Correctness , and Efficiency . 3.) Bias and Fairness is more tested in Recommendation (6%) and CV (3.9%) systems, while Security & Privacy is tested in CV (2%), Application Platforms (0.9%), and NLP (0.5%). 4.) We identified 13 types of testing methods, such as Unit Testing , Input Testing , and Model Testing . Conclusions: This study sheds light on the current adoption of software testing techniques and highlights gaps and limitations in existing ML testing practices.

Publisher

Association for Computing Machinery (ACM)

Reference150 articles.

1. 2019. Continuous Delivery for Machine Learning. https://martinfowler.com/articles/cd4ml.html.

2. 2021. GitHub REST API. Retrieved January 5, 2021 from https://developer.github.com/v3/

3. 2021. TOSEM-2021-Replication; “Studying the Practices of Testing Machine Learning Software in the Wild”. https://github.com/SWATLab-git/TOSEM-2021-Replication.

4. Black box fairness testing of machine learning models

5. Software Engineering for Machine Learning: A Case Study

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3