The Price of Anarchy of Strategic Queuing Systems

Author:

Gaitonde Jason1ORCID,Tardos Éva1ORCID

Affiliation:

1. Cornell University

Abstract

Bounding the price of anarchy, which quantifies the damage to social welfare due to selfish behavior of the participants, has been an important area of research in algorithmic game theory. Classical work on such bounds in repeated games makes the strong assumption that the subsequent rounds of the repeated games are independent beyond any influence on play from past history. This work studies such bounds in environments that themselves change due to the actions of the agents. Concretely, we consider this problem in discrete-time queuing systems, where competitive queues try to get their packets served. In this model, a queue gets to send a packet at each step to one of the servers, which will attempt to serve the oldest arriving packet, and unprocessed packets are returned to each queue. We model this as a repeated game where queues compete for the capacity of the servers, but where the state of the game evolves as the length of each queue varies. We analyze this queuing system from multiple perspectives. As a baseline measure, we first establish precise conditions on the queuing arrival rates and service capacities that ensure all packets clear efficiently under centralized coordination. We then show that if queues strategically choose servers according to independent and stationary distributions, the system remains stable provided it would be stable under coordination with arrival rates scaled up by a factor of just \(\frac{e}{e-1}\) . Finally, we extend these results to no-regret learning dynamics: if queues use learning algorithms satisfying the no-regret property to choose servers, then the requisite factor increases to 2, and both of these bounds are tight. Both of these results require new probabilistic techniques compared to the classical price of anarchy literature and show that in such settings, no-regret learning can exhibit efficiency loss due to myopia.

Funder

National Science Foundation

Air Force Office of Scientific Research

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3