Perspectives on network calculus

Author:

Ciucu Florin1,Schmitt Jens2

Affiliation:

1. T-Labs / TU Berlin, Berlin, Germany

2. University of Kaiserslautern, Kaiserslautern, Germany

Abstract

ACM Sigcomm 2006 published a paper [26] which was perceived to unify the deterministic and stochastic branches of the network calculus (abbreviated throughout as DNC and SNC) [39]. Unfortunately, this seemingly fundamental unification---which has raised the hope of a straightforward transfer of all results from DNC to SNC---is invalid. To substantiate this claim, we demonstrate that for the class of stationary and ergodic processes, which is prevalent in traffic modelling, the probabilistic arrival model from [26] is quasi-deterministic, i.e., the underlying probabilities are either zero or one. Thus, the probabilistic framework from [26] is unable to account for statistical multiplexing gain, which is in fact the raison d'être of packet-switched networks. Other previous formulations of SNC can capture statistical multiplexing gain, yet require additional assumptions [12], [22] or are more involved [14], [9] [28], and do not allow for a straightforward transfer of results from DNC. So, in essence, there is no free lunch in this endeavor. Our intention in this paper is to go beyond presenting a negative result by providing a comprehensive perspective on network calculus. To that end, we attempt to illustrate the fundamental concepts and features of network calculus in a systematic way, and also to rigorously clarify some key facts as well as misconceptions. We touch in particular on the relationship between linear systems, classical queueing theory, and network calculus, and on the lingering issue of tightness of network calculus bounds. We give a rigorous result illustrating that the statistical multiplexing gain scales as Ω(√ N ), as long as some small violations of system performance constraints are tolerable. This demonstrates that the network calculus can capture actual system behavior tightly when applied carefully. Thus, we positively conclude that it still holds promise as a valuable systematic methodology for the performance analysis of computer and communication systems, though the unification of DNC and SNC remains an open, yet quite elusive task.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transnet: A High-accuracy Network Delay Prediction Model via Transformer and GNN in 6G;2024 IEEE Wireless Communications and Networking Conference (WCNC);2024-04-21

2. Offloading Methodologies for Air-Ground Edge Intelligent Computing Systems;SpringerBriefs in Computer Science;2023-11-14

3. Digital Twin Driven Service Self-Healing With Graph Neural Networks in 6G Edge Networks;IEEE Journal on Selected Areas in Communications;2023-11

4. DONS: Fast and Affordable Discrete Event Network Simulation with Automatic Parallelization;Proceedings of the ACM SIGCOMM 2023 Conference;2023-09

5. Improving Network Delay Predictions Using GNNs;Journal of Network and Systems Management;2023-07-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3