Hard examples for resolution

Author:

Urquhart Alasdair1

Affiliation:

1. Univ. of Toronto, Toronto, Ont., Canada

Abstract

Exponential lower bounds are proved for the length-of-resolution refutations of sets of disjunctions constructed from expander graphs, using the method of Tseitin. Since these sets of clauses encode biconditionals, they have short (polynomial-length) refutations in a standard axiomatic formulation of propositional calculus.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference17 articles.

1. A simplified proof that regular resolution is exponential;BEN-ARI M;Inf. Proc. Lett.,1980

2. CHURCH A. Introduction to Mathematical Logic vol. 1. Princeton Univ. Press Princeton N.J. 1956. CHURCH A. Introduction to Mathematical Logic vol. 1. Princeton Univ. Press Princeton N.J. 1956.

3. CooK S.A. A short proof of the pigeon-hole principle using extended resolution. ACM SIGACT News 8 (Oct.-Dec. 1976) 28-32. 10.1145/1008335.1008338 CooK S.A. A short proof of the pigeon-hole principle using extended resolution. ACM SIGACT News 8 (Oct.-Dec. 1976) 28-32. 10.1145/1008335.1008338

4. The relative efficiency of propositional proof systems;COOK S. A.;J. Symbolic Logic,1979

Cited by 293 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Polynomial calculus for optimization;Artificial Intelligence;2024-12

2. A Generalized Method for Proving Polynomial Calculus Degree Lower Bounds;Journal of the ACM;2024-07-04

3. Lower Bounds for Regular Resolution over Parities;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

4. Constructions of strongly regular Cayley graphs derived from weakly regular bent functions;Discrete Mathematics;2024-05

5. Depth lower bounds in Stabbing Planes for combinatorial principles;Logical Methods in Computer Science;2024-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3