Staged parser combinators for efficient data processing

Author:

Jonnalagedda Manohar1,Coppey Thierry1,Stucki Sandro1,Rompf Tiark2,Odersky Martin1

Affiliation:

1. EPFL, Lausanne, Switzerland

2. EPFL, Orable Labs, Lausanne, Switzerland

Abstract

Parsers are ubiquitous in computing, and many applications depend on their performance for decoding data efficiently. Parser combinators are an intuitive tool for writing parsers: tight integration with the host language enables grammar specifications to be interleaved with processing of parse results. Unfortunately, parser combinators are typically slow due to the high overhead of the host language abstraction mechanisms that enable composition. We present a technique for eliminating such overhead. We use staging, a form of runtime code generation, to dissociate input parsing from parser composition, and eliminate intermediate data structures and computations associated with parser composition at staging time. A key challenge is to maintain support for input dependent grammars, which have no clear stage distinction. Our approach applies to top-down recursive-descent parsers as well as bottom-up non-deterministic parsers with key applications in dynamic programming on sequences, where we auto-generate code for parallel hardware. We achieve performance comparable to specialized, hand-written parsers.

Funder

European Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference38 articles.

1. The Apache HTTP server project. http://httpd.apache.org/. The Apache HTTP server project. http://httpd.apache.org/.

2. Synthesising graphics card programs from DSLs

3. Accelerating the Nussinov RNA folding algorithm with CUDA/GPU

4. Stream fusion

5. Dyna

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Daedalus: Safer Document Parsing;Proceedings of the ACM on Programming Languages;2024-06-20

2. Oregano: staging regular expressions with Moore Cayley fusion;Proceedings of the 15th ACM SIGPLAN International Haskell Symposium;2022-09-06

3. Multi-stage programming in the large with staged classes;Proceedings of the 19th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences;2020-11-16

4. Staged selective parser combinators;Proceedings of the ACM on Programming Languages;2020-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3