Bounded exhaustive test input generation from hybrid invariants

Author:

Rosner Nicolás1,Bengolea Valeria2,Ponzio Pablo2,Khalek Shadi Abdul3,Aguirre Nazareno4,Frias Marcelo F.5,Khurshid Sarfraz6

Affiliation:

1. University of Buenos Aires, Buenos Aires, Argentina

2. University of Rio Cuarto, Rio Cuarto, Argentina

3. Google, Kirkland, WA, USA

4. University of Rio Cuarto & CONICET, Rio Cuarto, Argentina

5. Buenos Aires Institute of Technology & CONICET, Buenos Aires, Argentina

6. The University of Texas at Austin, Austin, TX, USA

Abstract

We present a novel technique for producing bounded exhaustive test suites from hybrid invariants, i.e., invariants that are expressed imperatively, declaratively, or as a combination of declarative and imperative predicates. Hybrid specifications are processed using known mechanisms for the imperative and declarative parts, but combined in a way that enables us to exploit information from the declarative side, such as tight bounds computed from the declarative specification, to improve the search both on the imperative and declarative sides. Moreover, our technique automatically evaluates different possible ways of processing the imperative side, and the alternative settings (imperative or declarative) for parts of the invariant available both declaratively and imperatively, to decide the most convenient invariant configuration with respect to efficiency in test generation. This is achieved by transcoping, i.e., by assessing the efficiency of the different alternatives on small scopes (where generation times are negligible), and then extrapolating the results to larger scopes. We also show experiments involving collection classes that support the effectiveness of our technique, by demonstrating that (i) bounded exhaustive suites can be computed from hybrid invariants significantly more efficiently than doing so using state-of-the-art purely imperative and purely declarative approaches, and (ii) our technique is able to automatically determine efficient hybrid invariants, in the sense that they lead to an efficient computation of bounded exhaustive suites, using transcoping.

Funder

Agencia Nacional de Promoción Científica y Tecnológica

Universidad de Buenos Aires

Seventh Framework Programme

Division of Computing and Communication Foundations

Division of Computer and Network Systems

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Bounded Exhaustive Input Generation from Program APIs;Fundamental Approaches to Software Engineering;2023

2. Automated workarounds from Java program specifications based on SAT solving;International Journal on Software Tools for Technology Transfer;2018-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3