Region-based memory management for GPU programming languages

Author:

Holk Eric1,Newton Ryan1,Siek Jeremy1,Lumsdaine Andrew1

Affiliation:

1. Indiana University, Bloomington, IN, USA

Abstract

Graphics processing units (GPUs) can effectively accelerate many applications, but their applicability has been largely limited to problems whose solutions can be expressed neatly in terms of linear algebra. Indeed, most GPU programming languages limit the user to simple data structures - typically only multidimensional rectangular arrays of scalar values. Many algorithms are more naturally expressed using higher level language features, such as algebraic data types (ADTs) and first class procedures, yet building these structures in a manner suitable for a GPU remains a challenge. We present a region-based memory management approach that enables rich data structures in Harlan, a language for data parallel computing. Regions enable rich data structures by providing a uniform representation for pointers on both the CPU and GPU and by providing a means of transferring entire data structures between CPU and GPU memory. We demonstrate Harlan's increased expressiveness on several example programs and show that Harlan performs well on more traditional data-parallel problems.

Funder

National Science Foundation

Lilly Endowment

Mozilla Corporation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rust Language for GPU Programming;Lecture Notes in Computer Science;2022

2. Bounds Checking on GPU;International Journal of Parallel Programming;2021-03-25

3. High-Performance Defunctionalisation in Futhark;Lecture Notes in Computer Science;2019

4. Modular array-based GPU computing in a dynamically-typed language;Proceedings of the 4th ACM SIGPLAN International Workshop on Libraries, Languages, and Compilers for Array Programming;2017-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3