Our Model Achieves Excellent Performance on MovieLens: What Does It Mean?

Author:

Fan Yu-chen1ORCID,Ji Yitong1ORCID,Zhang Jie1ORCID,Sun Aixin1ORCID

Affiliation:

1. Nanyang Technological University, Singapore

Abstract

A typical benchmark dataset for recommender system (RecSys) evaluation consists of user-item interactions generated on a platform within a time period. The interaction generation mechanism partially explains why a user interacts with ( e.g. , like, purchase, rate) an item, and the context of when a particular interaction happened. In this study, we conduct a meticulous analysis of the MovieLens dataset and explain the potential impact of using the dataset for evaluating recommendation algorithms. We make a few main findings from our analysis. First, there are significant differences in user interactions at the different stages when a user interacts with the MovieLens platform. The early interactions largely define the user portrait which affect the subsequent interactions. Second, user interactions are highly affected by the candidate movies that are recommended by the platform’s internal recommendation algorithm(s). Third, changing the order of user interactions makes it more difficult for sequential algorithms to capture the progressive interaction process. We further discuss the discrepancy between the interaction generation mechanism that is employed by the MovieLens system and that of typical real-world recommendation scenarios. That is, the MovieLens dataset records \(\langle user-MovieLens\rangle\) interactions, but not \(\langle user-movie\rangle\) interactions. All research papers using the MovieLens dataset model the \(\langle user-MovieLens\rangle\) rather than the \(\langle user-movie\rangle\) interactions, making their results less generalizable to many practical recommendation scenarios in real-world settings. In summary, the MovieLens platform demonstrates an efficient and effective way of collecting user preferences to address cold-starts. However, models that achieve excellent recommendation accuracy on the MovieLens dataset may not demonstrate superior performance in practice , for at least two kinds of differences: (i) the differences in the contexts of user-item interaction generation, and (ii) the differences in user knowledge about the item collections. While results on MovieLens can be useful as a reference, they should not be solely relied upon as the primary justification for the effectiveness of a recommendation system model.

Publisher

Association for Computing Machinery (ACM)

Reference49 articles.

1. Himan Abdollahpouri, Masoud Mansoury, Robin Burke, and Bamshad Mobasher. 2020. The connection between popularity bias, calibration, and fairness in recommendation. In ACM Conference on Recommender Systems. 726–731.

2. Vito Walter Anelli, Alejandro Bellogín, Antonio Ferrara, Daniele Malitesta, Felice Antonio Merra, Claudio Pomo, Francesco Maria Donini, and Tommaso Di Noia. 2021. Elliot: A Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation. In ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2405–2414. https://doi.org/10.1145/3404835.3463245

3. Offline evaluation options for recommender systems;Cañamares Rocío;Information Retrieval Journal,2020

4. Shuo Chang, F Maxwell Harper, and Loren Terveen. 2015. Using groups of items for preference elicitation in recommender systems. In ACM Conference on Computer Supported Cooperative Work & Social Computing. 1258–1269.

5. Common pitfalls in training and evaluating recommender systems;Chen Hung-Hsuan;ACM SIGKDD Explorations Newsletter,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Movie Recommendations: A Deep Neural Network Approach with MovieLens Case Study;2024 International Wireless Communications and Mobile Computing (IWCMC);2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3