Tolerating process variations in large, set-associative caches

Author:

Koh Cheng-Kok1,Wong Weng-Fai2,Chen Yiran3,Li Hai3

Affiliation:

1. Purdue University, West Lafayette, IN

2. National University of Singapore

3. Seagate Technology LLC

Abstract

One important trend in today's microprocessor architectures is the increase in size of the processor caches. These caches also tend to be set associative. As technology scales, process variations are expected to increase the fault rates of the SRAM cells that compose such caches. As an important component of the processor, the parametric yield of SRAM cells is crucial to the overall performance and yield of the microchip. In this article, we propose a microarchitectural solution, called the buddy cache that permits large, set-associative caches to tolerate faults in SRAM cells due to process variations. In essence, instead of disabling a faulty cache block in a set (as is the current practice), it is paired with another faulty cache block in the same set—the buddy. Although both cache blocks are faulty, if the faults of the two blocks do not overlap, then instead of losing two blocks, buddying will yield a functional block from the nonfaulty portions of the two blocks. We found that with buddying, caches can better mitigate the negative impacts of process variations on performance and yield, gracefully downgrading performance as opposed to catastrophic failure. We will describe the details of the buddy cache and give insights as to why it is both more performance and yield resilient to faults.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finite-element-model updating of civil engineering structures using a hybrid UKF-HS algorithm;Structure and Infrastructure Engineering;2020-06-15

2. A fault-tolerant last level cache for CMPs operating at ultra-low voltage;Journal of Parallel and Distributed Computing;2019-03

3. A Fault-Tolerant L1 Cache with Predictable Performance by Virtual Filter Cache;2016 13th International Conference on Embedded Software and Systems (ICESS);2016-08

4. Exploring Variation-Aware Fault-Tolerant Cache under Near-Threshold Computing;2016 45th International Conference on Parallel Processing (ICPP);2016-08

5. A Survey of Architectural Techniques for Managing Process Variation;ACM Computing Surveys;2016-05-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3