Source-level debugging of scalar optimized code

Author:

Adl-Tabatabai Ali-Reza1,Gross Thomas2

Affiliation:

1. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA

2. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA and Institut für Computer Systeme, ETH Zürich CH 8092 Zürich

Abstract

Although compiler optimizations play a crucial role in the performance of modern computer systems, debugger technology has lagged behind in its support of optimization. Yet debugging the unoptimized translation is often impossible or futile, so handling of code optimizations in the debugger is necessary. But compiler optimizations make it difficult to provide source-level debugger functionality: Global optimizations can cause the runtime value of a variable to be inconsistent with the source-level value expected at a breakpoint; such variables are called endangered variables. A debugger must detect and warn the user of endangered variables otherwise the user may draw incorrect conclusions about the program. This paper presents a new algorithm for detecting variables that are endangered due to global scalar optimization. Our approach provides more precise classifications of variables and is still simpler than past approaches. We have implemented and evaluated our techniques in the context of the cmcc optimizing C compiler. We describe the compiler extensions necessary to perform the required bookkeeping of compiler optimization. We present measurements of the effect of optimizations on a debugger's ability to present the expected values of variables to the user.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Where Did My Variable Go? Poking Holes in Incomplete Debug Information;Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2;2023-01-27

2. Automatic Generation of Debug Headers through BlackBox Equivalence Checking;2022 IEEE/ACM International Symposium on Code Generation and Optimization (CGO);2022-04-02

3. Who’s debugging the debuggers? exposing debug information bugs in optimized binaries;Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems;2021-04-17

4. Automated bug localization in JIT compilers;Proceedings of the 17th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments;2021-04-07

5. Debug information validation for optimized code;Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation;2020-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3