1. M. Li , L. Zhou , Z. Yang , A. Li , F. Xia , D. G. Andersen , and A. Smola , " Parameter server for distributed machine learning," in Big learning NIPS workshop , vol. 6 , 2013 , p. 2. M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. G. Andersen, and A. Smola, "Parameter server for distributed machine learning," in Big learning NIPS workshop, vol. 6, 2013, p. 2.
2. H. B. McMahan , E. Moore , D. Ramage , S. Hampson , and B. A. y Arcas, "Communication-efficient learning of deep networks from decentralized data," in Artificial Intelligence and Statistics (AISTATS) , 2017 . H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, "Communication-efficient learning of deep networks from decentralized data," in Artificial Intelligence and Statistics (AISTATS), 2017.
3. S. Ruder "An overview of gradient descent optimization algorithms " arXiv preprint arXiv:1609.04747 2016. S. Ruder "An overview of gradient descent optimization algorithms " arXiv preprint arXiv:1609.04747 2016.
4. M. Li D. G. Andersen J. W. Park A. J. Smola A. Ahmed V. Josifovski J. Long E. J. Shekita and B.-Y. Su "Scaling distributed machine learning with the parameter server " in 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14) 2014 pp. 583--598. M. Li D. G. Andersen J. W. Park A. J. Smola A. Ahmed V. Josifovski J. Long E. J. Shekita and B.-Y. Su "Scaling distributed machine learning with the parameter server " in 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14) 2014 pp. 583--598.
5. Flexibility-Based Energy and Demand Management in Data Centers: A Case Study for Cloud Computing