Inducing heuristics to decide whether to schedule

Author:

Cavazos John1,Moss J. Eliot B.1

Affiliation:

1. University of Massachusetts, Amherst, MA

Abstract

Instruction scheduling is a compiler optimization that can improve program speed, sometimes by 10% or more, but it can also be expensive. Furthermore, time spent optimizing is more important in a Java just-in-time (JIT) compiler than in a traditional one because a JIT compiles code at run time, adding to the running time of the program. We found that, on any given block of code, instruction scheduling often does not produce significant benefit and sometimes degrades speed. Thus, we hoped that we could focus scheduling effort on those blocks that benefit from it.Using supervised learning we induced heuristics to predict which blocks benefit from scheduling. The induced function chooses, for each block, between list scheduling and not scheduling the block at all. Using the induced function we obtained over 90% of the improvement of scheduling every block but with less than 25% of the scheduling effort. When used in combination with profile-based adaptive optimization, the induced function remains effective but gives a smaller reduction in scheduling effort. Deciding when to optimize, and which optimization(s) to apply, is an important open problem area in compiler research. We show that supervised learning solves one of these problems well.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning in Compilers: Past, Present and Future;2020 Forum for Specification and Design Languages (FDL);2020-09-15

2. Referee: A Pattern-Guided Approach for Auto Design in Compiler-Based Analyzers;2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER);2020-02

3. Multi-objective Exploration for Practical Optimization Decisions in Binary Translation;ACM Transactions on Embedded Computing Systems;2019-10-19

4. A Survey on Compiler Autotuning using Machine Learning;ACM Computing Surveys;2019-09-30

5. An efficient tile size selection model based on machine learning;Journal of Parallel and Distributed Computing;2018-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3