Affiliation:
1. University of Massachusetts, Amherst, MA
Abstract
Instruction scheduling is a compiler optimization that can improve program speed, sometimes by 10% or more, but it can also be expensive. Furthermore, time spent optimizing is more important in a Java just-in-time (JIT) compiler than in a traditional one because a JIT compiles code at run time, adding to the running time of the program. We found that, on any given block of code, instruction scheduling often does not produce significant benefit and sometimes degrades speed. Thus, we hoped that we could focus scheduling effort on those blocks that benefit from it.Using supervised learning we induced heuristics to predict which blocks benefit from scheduling. The induced function chooses, for each block, between list scheduling and not scheduling the block at all. Using the induced function we obtained over 90% of the improvement of scheduling every block but with less than 25% of the scheduling effort. When used in combination with profile-based adaptive optimization, the induced function remains effective but gives a smaller reduction in scheduling effort. Deciding when to optimize, and which optimization(s) to apply, is an important open problem area in compiler research. We show that supervised learning solves one of these problems well.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design,Software
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献