Pontus: Finding Waves in Data Streams

Author:

Zhang Zhengxin1ORCID,Li Qing2ORCID,Duan Guanglin1ORCID,Zhao Dan2ORCID,Xiao Jingyu1ORCID,Xie Guorui1ORCID,Jiang Yong3ORCID

Affiliation:

1. Tsinghua University & Peng Cheng Laboratory, Shenzhen, China

2. Peng Cheng Laboratory, Shenzhen, China

3. Tsinghua Shenzhen International School & Peng Cheng Laboratory, Shenzhen, China

Abstract

The bumps and dips in data streams are valuable patterns for data mining and networking scenarios such as online advertising and botnet detection. In this paper, we define the wave, a data stream pattern with a serious deviation from the stable arrival rate for a period of time. We then propose Pontus, an efficient framework for wave detection and estimation. In Pontus, a lightweight data structure is utilized for the preliminary processing of incoming packets in the data plane to take advantage of its high processing speed; then, the powerful control plane carries out computationally intensive wave detection and estimation. In particular, we propose the Multi-Stage Progressive Tracking strategy which detects waves in stages and removes any disqualified items promptly to save memory. Hash collisions are addressed by a Stage Variance Maximization technique to reduce estimation error. Moreover, we prove the theoretical error bound and establish upper bounds of false positive and false negative. Experiment results show that the software version of Pontus can achieve around 97% F1-Score even under scarce memory when baselines fail. Furthermore, the implemented prototype of Pontus based on P4 achieves 842x higher throughput than the baseline strawman solution.

Funder

The National Natural Science Foundation of China

The National Key Research and Development Program of China

The Major Key Project of PCL

Shenzhen Science and Technology Innovation Commission: Research Center for Computer Network (Shenzhen) Ministry of Education, and the Shenzhen Key Lab of Software Defined Networking

Publisher

Association for Computing Machinery (ACM)

Reference45 articles.

1. Aditya Akella Theophilus Benson. 2010. Data center dataset. https://pages.cs.wisc.edu/~tbenson/IMC10_Data.html. (2010). Aditya Akella Theophilus Benson. 2010. Data center dataset. https://pages.cs.wisc.edu/~tbenson/IMC10_Data.html. (2010).

2. Manos Antonakakis and Tim April . 2017 . Understanding the mirai botnet . In 26th USENIX Security Symposium, USENIX Security 2017, 1093--1110. Manos Antonakakis and Tim April. 2017. Understanding the mirai botnet. In 26th USENIX Security Symposium, USENIX Security 2017, 1093--1110.

3. Barefoot Networks. 2021. Tofino switch. https://www.barefootnetworks.com/products/brief-tofino. (2021). Barefoot Networks. 2021. Tofino switch. https://www.barefootnetworks.com/products/brief-tofino. (2021).

4. Randomized admission policy for efficient top-k and frequency estimation

5. P4

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DISCO: A Dynamically Configurable Sketch Framework in Skewed Data Streams;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3