Cooperative Caching for GPUs

Author:

Dublish Saumay1,Nagarajan Vijay1,Topham Nigel1

Affiliation:

1. University of Edinburgh, UK

Abstract

The rise of general-purpose computing on GPUs has influenced architectural innovation on them. The introduction of an on-chip cache hierarchy is one such innovation. High L1 miss rates on GPUs, however, indicate inefficient cache usage due to myriad factors, such as cache thrashing and extensive multithreading. Such high L1 miss rates in turn place high demands on the shared L2 bandwidth. Extensive congestion in the L2 access path therefore results in high memory access latencies. In memory-intensive applications, these latencies get exposed due to a lack of active compute threads to mask such high latencies. In this article, we aim to reduce the pressure on the shared L2 bandwidth, thereby reducing the memory access latencies that lie in the critical path. We identify significant replication of data among private L1 caches, presenting an opportunity to reuse data among L1s. We further show how this reuse can be exploited via an L1 Cooperative Caching Network (CCN), thereby reducing the bandwidth demand on L2. In the proposed architecture, we connect the L1 caches with a lightweight ring network to facilitate intercore communication of shared data. We show that this technique reduces traffic to the L2 cache by an average of 29%, freeing up the bandwidth for other accesses. We also show that the CCN reduces the average memory latency by 24%, thereby reducing core stall cycles by 26% on average. This translates into an overall performance improvement of 14.7% on average (and up to 49%) for applications that exhibit reuse across L1 caches. In doing so, the CCN incurs a nominal area and energy overhead of 1.3% and 2.5%, respectively. Notably, the performance improvement with our proposed CCN compares favorably to the performance improvement achieved by simply doubling the number of L2 banks by up to 34%.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cross-core Data Sharing for Energy-efficient GPUs;ACM Transactions on Architecture and Code Optimization;2024-09-14

2. A Survey of Caching Techniques for General Purpose Graphics Processing Units;2024 3rd International Conference for Innovation in Technology (INOCON);2024-03-01

3. Collaborative Coalescing of Redundant Memory Access for GPU System;2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC);2024-01-22

4. Boustrophedonic Frames: Quasi-Optimal L2 Caching for Textures in GPUs;2023 32nd International Conference on Parallel Architectures and Compilation Techniques (PACT);2023-10-21

5. COLAB;Proceedings of the 28th Asia and South Pacific Design Automation Conference;2023-01-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3