Unsupervised Word Segmentation with Bi-directional Neural Language Model

Author:

Wang Lihao1ORCID,Zheng Xiaoqing1ORCID

Affiliation:

1. Fudan University, Shanghai, China

Abstract

We propose an unsupervised word segmentation model, in which for each unlabelled sentence sample, the learning objective is to maximize the generation probability of the sentence given its all possible segmentations. Such a generation probability can be factorized into the likelihood of each possible segment given the context in a recursive way. To capture both the long- and short-term dependencies, we propose to use a bi-directional neural language model to better extract the features of the segment’s context. Two decoding algorithms were also developed to combine the context features from both directions to generate the final segmentation at the inference time, which helps to reconcile word-boundary ambiguities. Experimental results show that our context-sensitive unsupervised segmentation model achieved state-of-the-art at different evaluation settings on various datasets for Chinese, and the comparable result for Thai.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference35 articles.

1. A neural probabilistic language model;Bengio Yoshua;J. Mach. Learn. Res.,2003

2. A Joint Model for Unsupervised Chinese Word Segmentation

3. Adversarial Multi-Criteria Learning for Chinese Word Segmentation

4. Learning phrase representations using RNN encoder-decoder for statistical machine translation;Cho Kyunghyun;arXiv preprint arXiv:1406.1078,2014

5. Thomas Emerson. 2005. The Second International Chinese Word Segmentation Bakeoff. In Proceedings of the 4th SIGHAN Workshop on Chinese Language Processing.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3