Tracking Data Provenance of Archaeological Temporal Information in Presence of Uncertainty

Author:

Migliorini Sara1ORCID,Quintarelli Elisa1,Belussi Alberto1

Affiliation:

1. Dept. of Computer Science, University of Verona, Verona, Italy

Abstract

The interpretation process is one of the main tasks performed by archaeologists who, starting from ground data about evidences and findings, incrementally derive knowledge about ancient objects or events. Very often more than one archaeologist contributes in different time instants to discover details about the same finding and thus, it is important to keep track of history and provenance of the overall knowledge discovery process. To this aim, we propose a model and a set of derivation rules for tracking and refining data provenance during the archaeological interpretation process. In particular, among all the possible interpretation activities, we concentrate on the one concerning the dating that archaeologists perform to assign one or more time intervals to a finding to define its lifespan on the temporal axis. In this context, we propose a framework to represent and derive updated provenance data about temporal information after the mentioned derivation process. Archaeological data, and in particular their temporal dimension, are typically vague, since many different interpretations can coexist, thus, we will use Fuzzy Logic to assign a degree of confidence to values and Fuzzy Temporal Constraint Networks to model relationships between dating of different findings represented as a graph-based dataset. The derivation rules used to infer more precise temporal intervals are enriched to manage also provenance information and their following updates after a derivation step. A MapReduce version of the path consistency algorithm is also proposed to improve the efficiency of the refining process on big graph-based datasets.

Funder

Italian National Group for Scientific Computation

“Progetto di Eccellenza” of the Computer Science Dept., Univ. of Verona, Italy

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Information Systems,Conservation

Reference50 articles.

1. 2013. World Wide Web Consortium - PROV-DM: The PROV Data Model. (2013). Retrieved from https://www.w3.org/TR/prov-dm/.

2. Maintaining knowledge about temporal intervals

3. Integrating quantitative and qualitative fuzzy temporal constraints;Badaloni S.;AI Commun.,2004

4. J. A. Barceló. 2010. Computational intelligence in archaeology. State of the art. In Proceedings of the 37th International Conference on Computer Applications & Qualitative Methods in Archaeology (CAA). 11–21.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3