Small-Space Spectral Sparsification via Bounded-Independence Sampling

Author:

Doron Dean1ORCID,Murtagh Jack2ORCID,Vadhan Salil3ORCID,Zuckerman David3ORCID

Affiliation:

1. Ben Gurion University of the Negev, Be’er Sheva, Israel

2. Harvard University, Cambridge, MA, USA

3. University of Texas at Austin, Austin, TX, USA

Abstract

We give a deterministic, nearly logarithmic-space algorithm for mild spectral sparsification of undirected graphs. Given a weighted, undirected graph G on n vertices described by a binary string of length N , an integer k ≤ log n , and an error parameter ɛ > 0, our algorithm runs in space \(\widetilde{O}(k\log (N\cdot w_{\mathrm{max}}/w_{\mathrm{min}})),\) where w max and w min are the maximum and minimum edge weights in G , and produces a weighted graph H with \(\widetilde{O}(n^{1+2/k}/\varepsilon ^2)\) edges that spectrally approximates G , in the sense of Spielman and Teng, up to an error of ɛ. Our algorithm is based on a new bounded-independence analysis of Spielman and Srivastava’s effective resistance-based edge sampling algorithm and uses results from recent work on space-bounded Laplacian solvers. In particular, we demonstrate an inherent trade-off (via upper and lower bounds) between the amount of (bounded) independence used in the edge sampling algorithm, denoted by k above, and the resulting sparsity that can be achieved.

Funder

Motwani Postdoctoral Fellowship

National Science Foundation

Simons Investigator Award

Publisher

Association for Computing Machinery (ACM)

Reference55 articles.

1. High-precision estimation of random walks in small space;Ahmadinejad AmirMahdi;arXiv preprint arXiv:1912.04524,2019

2. Zeyuan Allen-Zhu, Zhenyu Liao, and Lorenzo Orecchia. 2015. Spectral sparsification and regret minimization beyond matrix multiplicative updates. In Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC’15). ACM, 237–245.

3. A fast and simple randomized parallel algorithm for the maximal independent set problem

4. Noga Alon and Asaf Nussboim. 2008. k-wise independent random graphs. In Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS’08). IEEE, 813–822.

5. Computational Complexity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3