Transfer Learning for Low-Resource Multilingual Relation Classification

Author:

Nag Arijit1ORCID,Samanta Bidisha1ORCID,Mukherjee Animesh1ORCID,Ganguly Niloy1ORCID,Chakrabarti Soumen1ORCID

Affiliation:

1. Indian Institute of Technology, Kharagpur, India

Abstract

Relation classification (sometimes called relation extraction ) requires trustworthy datasets for fine-tuning large language models, as well as for evaluation. Data collection is challenging for Indian languages, because they are syntactically and morphologically diverse, as well as different from resource-rich languages like English. Despite recent interest in deep generative models for Indian languages, relation classification is still not well served by public datasets. In response, we present IndoRE , a dataset with 21K entity- and relation-tagged gold sentences in three Indian languages (Bengali, Hindi, and Telugu), plus English. We start with a multilingual BERT (mBERT)-based system that captures entity span positions and type information, and provides competitive performance on monolingual relation classification. Using this baseline system, we explore transfer mechanisms between languages and the scope to reduce expensive data annotation while achieving reasonable relation extraction performance. Specifically, we (a) study the accuracy-efficiency trade-off between expensive, manually labeled gold instances vs. automatically translated and aligned silver instances to train a relation extractor, (b) device a simple mechanism for budgeted gold data annotation by intelligently converting distant-supervised silver training instances to gold training instances with human annotators using active learning, and finally (c) propose an ensemble model to provide a performance boost over that achieved via limited gold training instances. We release the dataset for future research. 1

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3