Nondeterministic Evaluation Mechanism for User Recruitment in Mobile Crowd-Sensing

Author:

Xie Ying1ORCID,Liu Xiaohui2ORCID,Obaidat Mohammad S.3ORCID,Li Xiong4ORCID,Vijayakumar Pandi5ORCID

Affiliation:

1. School of Computer Science and Engineering, Southwest Minzu University, Sichuan, China

2. National Computer Network Emergency Response Coordination Center, Beijing, China

3. Life Fellow of IEEE, Fellow of AAIA and Fellow of SCS, Distinguished Professor at King Abdullah II School of Information Technology, University of Jordan, Amman 11942, Jordan; School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China; Amity University, Noida, UP201301, India

4. School of Computer Science and Engineering, University of Electronic Science and Technology of China, Sichuan, China

5. Department of Computer Science and Engineering, University College of Engineering Tindivanam, Tamil Nadu, India

Abstract

Based on the Internet of Behavior (IoB), mobile crowd-sensing (MCS) utilizes the Internet of Things (IoT) to recruit users by analyzing behavioral patterns. MCS is widely used in numerous large-scale and complex monitoring services, but it cannot provide stable and high-quality services due to nondeterministic user mobility and behaviors, which has a vital impact on recruiting high-quality users. In this article, a stochastic semi-algebraic hybrid system (SSAHS) model is constructed to characterize the user mobility and behaviors of the MCS systems. Based on the definition of probabilistic path and task execution rate, a nondeterministic evaluation mechanism is proposed to measure nondeterministic user mobility and behaviors and to give the probability of the user completing the MCS task under the specified time bound and space conditions. The greater the probability is, the higher the quality of the user. Furthermore, a user recruitment scheme based on a nondeterministic evaluation mechanism (NUR) is developed. The NUR employs historical user data to predict user mobility and behaviors; high-quality users are recruited to quickly upload reliable sensing data. We conduct simulation experiments based on a real-world user trace dataset, Geolife.The results show that compared with competing recruitment strategies, NUR achieves a higher quality of service for the same MCS sensing tasks.

Funder

National Natural Science Foundation of China

National Science Foundation of Sichuan, China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3