Concurrent programming without locks

Author:

Fraser Keir1,Harris Tim2

Affiliation:

1. University of Cambridge Computer Laboratory, Cambridge, UK

2. Microsoft Research Cambridge, Cambridge, UK

Abstract

Mutual exclusion locks remain the de facto mechanism for concurrency control on shared-memory data structures. However, their apparent simplicity is deceptive: It is hard to design scalable locking strategies because locks can harbor problems such as priority inversion, deadlock, and convoying. Furthermore, scalable lock-based systems are not readily composable when building compound operations. In looking for solutions to these problems, interest has developed in nonblocking systems which have promised scalability and robustness by eschewing mutual exclusion while still ensuring safety. However, existing techniques for building nonblocking systems are rarely suitable for practical use, imposing substantial storage overheads, serializing nonconflicting operations, or requiring instructions not readily available on today's CPUs. In this article we present three APIs which make it easier to develop nonblocking implementations of arbitrary data structures. The first API is a multiword compare-and-swap operation (MCAS) which atomically updates a set of memory locations. This can be used to advance a data structure from one consistent state to another. The second API is a word-based software transactional memory (WSTM) which can allow sequential code to be reused more directly than with MCAS and which provides better scalability when locations are being read rather than being updated. The third API is an object-based software transactional memory (OSTM). OSTM allows a simpler implementation than WSTM, but at the cost of reengineering the code to use OSTM objects. We present practical implementations of all three of these APIs, built from operations available across all of today's major CPU families. We illustrate the use of these APIs by using them to build highly concurrent skip lists and red-black trees. We compare the performance of the resulting implementations against one another and against high-performance lock-based systems. These results demonstrate that it is possible to build useful nonblocking data structures with performance comparable to, or better than, sophisticated lock-based designs.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A program logic for obstruction-freedom;Frontiers of Computer Science;2023-12-28

2. Compiler‐driven approach for automating nonblocking synchronization in concurrent data abstractions;Concurrency and Computation: Practice and Experience;2023-10-24

3. On Solving Concurrent Process Problem in Process-Oriented Programs;Vestnik NSU. Series: Information Technologies;2023-10-05

4. Releasing Memory with Optimistic Access: A Hybrid Approach to Memory Reclamation and Allocation in Lock-Free Programs;Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures;2023-06-17

5. When Tree Meets Hash: Reducing Random Reads for Index Structures on Persistent Memories;Proceedings of the ACM on Management of Data;2023-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3