Explicit State Representation Guided Video-based Pedestrian Attribute Recognition

Author:

Lu Wei-Qing1ORCID,Hu Hai-Miao2ORCID,Yu Jinzuo1ORCID,Zhang Shifeng3ORCID,Wang Hanzi4ORCID

Affiliation:

1. Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China

2. the State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China

3. HIKVISION, Hangzhou 310051, China

4. Xiamen University, Xiamen 361005, China

Abstract

The pedestrian attribute recognition aims to generate a structured description of pedestrians, which serves an important role in surveillance. Current works usually assume that the images and the specific pedestrian states, including pedestrian occlusion and pedestrian orientation, are given. However, we argue that the current works ignore the guidance of the pedestrian state and cannot achieve the appropriate performance since the appearance feature will become unreliable due to the variance of the pedestrian state, which is common in practice. Therefore, this paper proposes the Explicit State Representation (ExSR) Guided Pedestrian Attribute Recognition to improve the accuracy through state learning and attribute fusion among frames. Firstly, the pedestrian state is explicitly represented by concatenating the pedestrian orientation and occlusion, which can be accurately determined via analyzing the pose. Secondly, the state-aware pedestrian attribute fusion method is proposed and divided into two cases, namely the inter-state case and the intra-state case. In the intra-state case, the appearance feature will remain stable and the attribute relations are propagated to refine. The method of exploiting attribute relations within a single frame is the Graph Neural Network. In the inter-state case, the state changes, the attribute relationship propagation is prevented, and the advantages of attribute recognition in each frame are complemented to make a reliable judgment on the invisible region. The experimental results demonstrate that the ExSR outperforms the state-of-the-art methods on two public databases, benefiting from the explicit introduction of the state into the attribute recognition.

Funder

“Pioneer” and “eading Goose” R&D Program of Zhejiang

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3