GPU Multisplit

Author:

Ashkiani Saman1,Davidson Andrew1,Meyer Ulrich2,Owens John D.1

Affiliation:

1. University of California, Davis

2. Goethe-Universität Frankfurt am Main

Abstract

Multisplit is a broadly useful parallel primitive that permutes its input data into contiguous buckets or bins , where the function that categorizes an element into a bucket is provided by the programmer. Due to the lack of an efficient multisplit on Graphics Processing Units (GPUs), programmers often choose to implement multisplit with a sort. One way is to first generate an auxiliary array of bucket IDs and then sort input data based on it. In case smaller indexed buckets possess smaller valued keys, another way for multisplit is to directly sort input data. Both methods are inefficient and require more work than necessary: The former requires more expensive data movements while the latter spends unnecessary effort in sorting elements within each bucket. In this work, we provide a parallel model and multiple implementations for the multisplit problem. Our principal focus is multisplit for a small (up to 256) number of buckets. We use warp-synchronous programming models and emphasize warpwide communications to avoid branch divergence and reduce memory usage. We also hierarchically reorder input elements to achieve better coalescing of global memory accesses. On a GeForce GTX 1080 GPU, we can reach a peak throughput of 18.93Gkeys/s (or 11.68Gpairs/s) for a key-only (or key-value) multisplit. Finally, we demonstrate how multisplit can be used as a building block for radix sort. In our multisplit-based sort implementation, we achieve comparable performance to the fastest GPU sort routines, sorting 32-bit keys (and key-value pairs) with a throughput of 3.0Gkeys/s (and 2.1Gpair/s).

Funder

DFG

MADALGO

Sandia LDRD

UC Lab Fees Research Program

NVIDIA Graduate Fellowship

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Theory and Mathematics,Computer Science Applications,Hardware and Architecture,Modeling and Simulation,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel parallel mammogram sharpening framework using modified Laplacian filter for lumps identification on GPU;Innovations in Systems and Software Engineering;2024-06-19

2. Split-bucket partition (SBP): a novel execution model for top-K and selection algorithms on GPUs;The Journal of Supercomputing;2024-03-29

3. Computing Group-By and Aggregates on Massively Parallel Systems;2023 IEEE International Conference on Big Data (BigData);2023-12-15

4. Optimization Techniques for GPU Programming;ACM Computing Surveys;2023-03-16

5. G-PICS: A Framework for GPU-Based Spatial Indexing and Query Processing;IEEE Transactions on Knowledge and Data Engineering;2022-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3