Affiliation:
1. The University of Hong Kong, Hong Kong
Abstract
This paper presents a lexicalized HMM-based approach to Chinese named entity recognition (NER). To tackle the problem of unknown words, we unify unknown word identification and NER as a single tagging task on a sequence of known words. To do this, we first employ a known-word bigram-based model to segment a sentence into a sequence of known words, and then apply the uniformly lexicalized HMMs to assign each known word a proper hybrid tag that indicates its pattern in forming an entity and the category of the formed entity. Our system is able to integrate both the internal formation patterns and the surrounding contextual clues for NER under the framework of HMMs. As a result, the performance of the system can be improved without losing its efficiency in training and tagging. We have tested our system using different public corpora. The results show that lexicalized HMMs can substantially improve NER performance over standard HMMs. The results also indicate that character-based tagging (viz. the tagging based on pure single-character words) is comparable to and can even outperform the relevant known-word based tagging when a lexicalization technique is applied.
Publisher
Association for Computing Machinery (ACM)
Reference23 articles.
1. Named entity recognition using an HMM-based chunk tagger
2. Exploiting dictionaries in named entity extraction
3. Transformation-based error-driven learning and natural language processing: A case study in part-of-speech tagging;Brill E;Computational Linguistics,1995
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献