On detection and tracking of variant phenomena clouds

Author:

Thai My T.1,Tiwari Ravi1,Bose Raja1,Helal Abdelsalam1

Affiliation:

1. University of Florida, Gainesville, FL

Abstract

Phenomena clouds are characterized by nondeterministic, dynamic variations of shapes, sizes, direction, and speed of motion along multiple axes. The phenomena detection and tracking should not be limited to some traditional applications such as oil spills and gas clouds but also be utilized to more accurately observe other types of phenomena such as walking motion of people. This wider range of applications requires more reliable, in-situ techniques that can accurately adapt to the dynamics of phenomena. Unfortunately, existing works which only focus on simple and well-defined shapes of phenomena are no longer sufficient. In this article, we present a new class of applications together with several distributed algorithms to detect and track phenomena clouds, regardless of their shapes and movement direction. We first propose a distributed algorithm for in-situ detection and tracking of phenomena clouds in a sensor space. We next provide a mathematical model to optimize the energy consumption, on which we further propose a localized algorithm to minimize the resource utilization. Our proposed approaches not only ensure low processing and networking overhead at the centralized query processor but also minimize the number of sensors which are actively involved in the detection and tracking processes. We validate our approach using both real-life smart home applications and simulation experiments, which confirm the effectiveness of our proposed algorithms. We also show that our algorithms result in significant reduction in resource usage and power consumption as compared to contemporary stream-based approaches.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3