End-to-end estimation of the available bandwidth variation range

Author:

Jain Manish1,Dovrolis Constantinos1

Affiliation:

1. Georgia Tech

Abstract

The available bandwidth (avail-bw) of a network path is an important performance metric and its end-to-end estimation has recently received significant attention. Previous work focused on the estimation of the average avail-bw, ignoring the significant variability of this metric in different time scales. In this paper, we show how to estimate a given percentile of the avail-bw distribution at a user-specified time scale. If two estimated percentiles cover the bulk of the distribution (say 10% to 90%), the user can obtain a practical estimate for the avail-bw variation range. We present two estimation techniques. The first is iterative and non-parametric, meaning that it is more appropriate for very short time scales (typically less than 100ms), or in bottlenecks with limited flow multiplexing (where the avail-bw distribution may be non-Gaussian). The second technique is parametric, because it assumes that the avail-bw follows the Gaussian distribution, and it can produce an estimate faster because it is not iterative. The two techniques have been implemented in a measurement tool called Pathvar. Pathvar can track the avail-bw variation range within 10-20%, even under non-stationary conditions. Finally, we identify four factors that play a crucial role in the variation range of the avail-bw: traffic load, number of competing flows, rate of competing flows, and of course the measurement time scale.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. QoE-Driven Adaptive K-Push for HTTP/2 Live Streaming;IEEE Transactions on Circuits and Systems for Video Technology;2019-06

2. XMAS: An Efficient Mobile Adaptive Streaming Scheme Based on Traffic Shaping;IEEE Transactions on Multimedia;2019-02

3. Beyond throughput;Proceedings of the 9th ACM Multimedia Systems Conference;2018-06-12

4. On Improving Video Streaming Efficiency, Fairness, Stability, and Convergence Time Through Client–Server Cooperation;IEEE Transactions on Broadcasting;2018-03

5. Using Adaptive Heartbeat Rate on Long-Lived TCP Connections;IEEE/ACM Transactions on Networking;2018-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3