Geodesic image and video editing

Author:

Criminisi Antonio1,Sharp Toby1,Rother Carsten1,P'erez Patrick2

Affiliation:

1. Microsoft Research Ltd, Cambridge, UK

2. Technicolor Research and Innovation, Cesson-Sévigné, France

Abstract

This article presents a new, unified technique to perform general edge-sensitive editing operations on n-dimensional images and videos efficiently. The first contribution of the article is the introduction of a Generalized Geodesic Distance Transform (GGDT), based on soft masks. This provides a unified framework to address several edge-aware editing operations. Diverse tasks such as denoising and nonphotorealistic rendering are all dealt with fundamentally the same, fast algorithm. Second, a new Geodesic Symmetric Filter (GSF) is presented which imposes contrast-sensitive spatial smoothness into segmentation and segmentation-based editing tasks (cutout, object highlighting, colorization, panorama stitching). The effect of the filter is controlled by two intuitive, geometric parameters. In contrast to existing techniques, the GSF filter is applied to real-valued pixel likelihoods (soft masks), thanks to GGDTs and it can be used for both interactive and automatic editing. Complex object topologies are dealt with effortlessly. Finally, the parallelism of GGDTs enables us to exploit modern multicore CPU architectures as well as powerful new GPUs, thus providing great flexibility of implementation and deployment. Our technique operates on both images and videos, and generalizes naturally to n-dimensional data. The proposed algorithm is validated via quantitative and qualitative comparisons with existing, state-of-the-art approaches. Numerous results on a variety of image and video editing tasks further demonstrate the effectiveness of our method.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3