Twin-Width IV: Ordered Graphs and Matrices

Author:

Bonnet Édouard1ORCID,Giocanti Ugo2ORCID,de Mendez Patrice Ossona3ORCID,Simon Pierre4ORCID,Thomassé Stéphan1ORCID,Toruńczyk Szymon5ORCID

Affiliation:

1. ENS de Lyon, LIP UMR5668, Lyon, France

2. Univ. Grenoble Alpes, CNRS, Laboratoire G-SCOP, Grenoble, France

3. CAMS CNRS UMR 8557, Paris, France and Charles University, Prague, Czech Republic

4. UC Berkeley, Berkeley, United States

5. University of Warsaw, Warszawa Poland

Abstract

We establish a list of characterizations of bounded twin-width for hereditary classes of totally ordered graphs: as classes of at most exponential growth studied in enumerative combinatorics, as monadically NIP classes studied in model theory, as classes that do not transduce the class of all graphs studied in finite model theory, and as classes for which model checking first-order logic is fixed-parameter tractable studied in algorithmic graph theory. This has several consequences. First, it allows us to show that every hereditary class of ordered graphs either has at most exponential growth, or has at least factorial growth. This settles a question first asked by Balogh et al. [ 5 ] on the growth of hereditary classes of ordered graphs, generalizing the Stanley-Wilf conjecture/Marcus-Tardos theorem. Second, it gives a fixed-parameter approximation algorithm for twin-width on ordered graphs. Third, it yields a full classification of fixed-parameter tractable first-order model checking on hereditary classes of ordered binary structures. Fourth, it provides a model-theoretic characterization of classes with bounded twin-width. Finally, it settles the small conjecture [ 8 ] in the case of ordered graphs.

Funder

European Research Council

European Union’s Horizon 2020

French National Research Agency

Publisher

Association for Computing Machinery (ACM)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Twin-width and permutations;Logical Methods in Computer Science;2024-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3